
Threshold Operators in Knowledge Representation

Pietro Galliani1 Oliver Kutz1 Daniele Porello2

Guendalina Righetti1 Nicolas Troquard1

1. Free University of Bozen-Bolzano (UNIBZ)

2. Laboratory for Applied Ontology (ISTC-CNR, Trento)

1 / 41



Example

� Course A: 1 credit

� Course B: 1 credit

� Course C: 2 credits

� Course D: 2 credits

� A student must gain at least 3 credits.

Student v (C uD) t ((A t B) u (C tD))

Student v ∇∇3(A : 1,B : 1,C : 2,D : 2)

Semantically equivalent, but more human-readable and more easy to update.
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Example (cont,)

� Course A: 1 credit

� Course B: 1 credit

� Course C: 1 credit

� Course D: 2 credits

� A student must gain at least 3 credits.

Student v (A u B u C) t ((A t B t C) uD)

Student v ∇∇3(A : 1,B : 1,C : 1,D : 2)
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Example (Florida Felony Score Sheet)

� Possession of Cocaine: +16 “felony points”;

� Moderate injuries: +18 “felony points”;

� Failure to appear: +4 “felony points”;

� . . .

If total ≥ 44, imprisonment is compulsory; otherwise, not so.

How to express COMPULSORY IMPRISONMENT in a knowledge base? Certainly possible (e.g. Disjunctive
Normal Form), but not very short or readable. . .

COMPULSORY IMPRISONMENT ≡ (COCAINE u FAILURE TO APPEAR u . . .) t . . .

With threshold operators, much clearer:

COMPULSORY IMPRISONMENT ≡ ∇∇44(COCAINE : 16, MODERATE INJURIES : 18, . . .)
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Links with complexity theory and with learning

Weighted Threshold Operators have been studied in the context of propositional logic and
circuit complexity: [Valiant 1984], [Hajnal et al. 93], [Beimel and Weinreb 2006],
[Goldmann et al. 1992] [Goldmann and Karpinski 1998].

In that context, these operators have been seen to be closely related important open problems in
complexity theory.

Here, instead, we are interested in their possible application to Knowledge Representation in
Description Logic.

Tooth operators are simple, conceptually clear connectives that—because of their obvious connections
with linear classification models—provide a natural link between knowledge representation and
statistical learning.
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What We Propose

Extend languages for the representation of knowledge (e.g. DLs) with Weighted Threshold Operators

(∇∇t(C1 : w1, . . . , Cn : wn))I =

d ∈ ∆I :
∑
d∈CI

k

wk ≥ t


� Does not increase expressive power (if usual Boolean connectives available);

� More human-understandable in many context;

� Easier to update;

� Easier to learn (linear classifier!).

∑C1
...
Cn

w1

wn

≥ t?
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Two Important Questions

1 How costly is reasoning with threshold? Given a knowledge base K ∈ L(∇∇) and a φ ∈ L(∇∇),
how hard is it to decide whether K |= φ compared to the same problem without ∇∇?

2 Are small, human-readable threshold expressions powerful enough to learn and express useful
concepts?
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Two Answers

1 How costly is reasoning with threshold? Given a knowledge base K ∈ L(∇∇) and a φ ∈ L(∇∇),
how hard is it to decide whether K |= φ compared to the same problem without ∇∇?
I (If L contains Boolean connectives): not harder than the inference problem for L, up to polynomial

reduction.

2 Are small, human-readable threshold expressions powerful enough to learn and express useful
concepts?
I YES!
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Our Claim

If a language for the representation of knowledge has the usual Boolean connectives but cannot
represent directly threshold expressions, it probably should.

+ Threshold expressions appear often in practical applications;

+ Threshold expressions are easily learned from data;

+ Threshold expressions are easily human-readable (if not big);

+ Threshold expressions can be reduced away easily.

- ???

Threshold expressions are just syntactic sugar? In a way, but it’s useful syntactic sugar and it should
be readily available in most knowledge representation languages.
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Language

For A ∈ NC , R ∈ NR, t ∈ Z, m ∈ Z>0, ~w ∈ Zm the set of ALC(∇∇) concepts is described by the
grammar:

C ::= ⊥ | > | A | ¬C | C u C | C t C | ∀R.C | ∃R.C |
∇∇t(C1 : w1, . . . , Cm : wm)

(Allowing real thresholds/weights instead of integer would not increase expressive power)
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(Knowledge-independent) tooth operators

Definition (Values of individuals in knowledge-independent tooth operators)

Let C = ∇∇t((Ci : wi)i=1...m) be a knowledge-independent tooth operator, let I be an interpretation,
and let d ∈ ∆I be an individual in the domain of I. Then

vIC (d) =
∑

i∈{1,...,m}

{wi | d ∈ CI
i }.

Definition (Semantics of knowledge-independent tooth operators)

Let C = ∇∇t((Ci : wi)i=1...n) be a knowledge-independent tooth operator and let I be an
interpretation. Then

C
I = {d ∈ ∆I | vIC (d) ≥ t}.
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Entailment of (knowledge-independent) tooth expressions

Definition (Evaluating knowledge-independent tooth operators over knowledge bases)

Let K be a knowledge base, let a be an individual name, and let C = ∇∇t((Ci : wi)i=1...n) be a
knowledge-independent tooth expression. Then we define the value of a in C with respect to K as

µKC (a) = min{vIC (aI) : I |= K}.

Proposition

Let K be any knowledge base, let a be an individual name, and let C = ∇∇t((Ci : wi)i=1...n) be any
knowledge-independent tooth expression. Then

K |= C(a)⇔ µKC (a) ≥ t.
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Example

� Course A: 1 credit

� Course B: 1 credit

� Course C: 2 credits

� Course D: 2 credits

� A student must gain at least 3 credits.

� Alice took courses C and D

� Bob is a student who did not take course C.

K = {Student v ∇∇3(A : 1,B : 1,C : 2,D : 2), Alice : C, Alice : D, Bob : Student, Bob : ¬C}

Does it follow that...

1 Alice is a student?

2 Bob took course A?

3 Bob took course D?
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Example

K = {Student v ∇∇3(A : 1,B : 1,C : 2,D : 2), Alice : C, Alice : D, Bob : Student, Bob : ¬C}

K 6|= Alice : Student.
Indeed, let I be any interpretation such that I |= K. Then AliceI ∈ CI and AliceI ∈ DI , and so

vI(A:1,B:1,C:2,D:2)(Alice
I) =

{
1 if AliceI ∈ AI

0 otherwise

}
+

{
1 if AliceI ∈ BI

0 otherwise

}
+{

2 if AliceI ∈ CI

0 otherwise

}
+

{
2 if AliceI ∈ DI

0 otherwise

}
≥ 4

and therefore AliceI ∈ (∇∇3(A : 1,B : 1,C : 2,D : 2))I = {d ∈ ∆I : vI(A:1,B:1,C:2,D:2)(d) ≥ 3}.

But even though StudentI ⊆ (∇∇3(A : 1,B : 1,C : 2,D : 2))I and
AliceI ∈ ∇∇3(A : 1,B : 1,C : 2,D : 2))I , it does not follow that Alice is a student!
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Example

K = {Student v ∇∇3(A : 1,B : 1,C : 2,D : 2), Alice : C, Alice : D, Bob : Student, Bob : ¬C}

K 6|= Bob : A either.
To be a student, Bob needs only 3 credits, and he can get them by taking courses B and D instead.

Let I be such that

� ∆I = {alice, bob}, AliceI = alice, BobI = bob;

� StudentI = {bob};
� AI = ∅;
� BI = {bob};
� CI = {alice};
� DI = {alice, bob}.

Then ∇∇3(A : 1,B : 1,C : 2,D : 2))I = {alice, bob} ⊇ StudentI = {BobI}; AliceI ∈ CI ∩DI ;
BobI ∈ StudentI\CI .
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Example

K = {Student v ∇∇3(A : 1,B : 1,C : 2,D : 2), Alice : C, Alice : D, Bob : Student, Bob : ¬C}

K |= Bob : D.
Indeed, suppose that I |= K. Then BobI ∈ StudentI , so I ∈ ∇∇3(A : 1,B : 1,C : 2,D : 2)I and

vI(A:1,B:1,C:2,D:2)(Bob
I) =

{
1 if BobI ∈ AI

0 otherwise

}
+

{
1 if BobI ∈ BI

0 otherwise

}
+{

2 if BobI ∈ CI

0 otherwise

}
+

{
2 if BobI ∈ DI

0 otherwise

}
≥ 3

which is only possible if BobI ∈ DI .
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Negative Weights/Thresholds are Unnecessary

Observation

∇∇t(C1 : w1, . . .) ≡ ∇∇t−w1(¬C1 : −w1, . . .)

1 If d ∈ CI
1 then vI(C1:w1,...)

(d) = w1 + rest, vI(¬C1:−w1,...)
(d) = 0 + rest and so

vI(C1:w1,...)
(d) = vI(¬C1:−w1,...)

(d) + w1;

2 If d 6∈ CI
1 then vI(C1:w1,...)

(d) = 0 + rest, vI(¬C1:−w1,...)
(d) = −wi + rest and so

vI(C1:w1,...)
(d) = vI(¬C1:−w1,...)

(d) + w1;

So in either case, vI(¬C1:−w1,...)
(d) ≥ t⇔ vI(¬C1:−w1,...)

(d) ≥ t− w1.

Therefore, we can change all negative weights into positive ones by negating the corr. concepts,
adjusting threshold. If at the end the threshold is ≤ 0, the whole expression is just >; otherwise, we
have an equivalent expression with positive weights and threshold.
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Example

Course A: 1 credit Course A: 1 credit
Course B: 1 credit Course B: 1 credit
Course C: 2 credits Course C: 2 credits
Course D: 2 credits Course D: 2 credits
Cheated: -2 credits Did not cheat: 2 credits
A student must gain at least 3 credits. A student must gain at least 5 credits.

Student v ∇∇3(A : 1,B : 1,C : 2,D : 2,Cheat : −2) Student v ∇∇5(A : 1,B : 1,C : 2,D : 2,¬Cheat : 2)
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Translating Threshold Expressions

Our Theorem

Let L be a Description Logic that contains all Boolean connectives, let K be a L(∇∇) knowledge base
and let φ be a L(∇∇) axiom (positive integer weights). Then, the problem of whether K |= φ can be
reduced, with polynomial overhead, to the problem of whether KL |= φL for some L knowledge base
KL and some L axiom φL.

A NOTE: In the translation, the size of a formula contains also the length of thresholds and weights
(in binary).
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Translating Threshold Expressions

The Main Lemma

Let T = ∇∇t(C1 : w1 . . . Cn : wn) be any L(∇∇) threshold expression, where C1 . . . Cn are L-concepts
and t, w1 . . . wn are positive integers. Furthermore, let TOOTH be an atomic concept symbol not
appearing in T.
Then we can build a knowledge base K(T 7→ TOOTH) in L, containing expressions built out of the
concepts expressions C1 . . . Cn and of a number of fresh atomic symbols (including TOOTH) such that

1 K(T 7→ TOOTH) |= TOOTH ≡ T;

2 Every interpretation I whose signature contains the atoms contained in T but not the fresh atoms
introduced by K(T 7→ TOOTH) can be expanded in one and only one way into some I ′ that satisfies
K(T 7→ TOOTH);

3 The size of K(T 7→ TOOTH) is polynomial in the size of T.
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Translating Threshold Expressions

A Consequence of the Main Lemma

Let C be any L(∇∇)-concept. Then we can find an L-theory KC , of size polynomial in the size of C
and containing the symbols occurring in C as well as a number of fresh atomic concept symbols, and a
L concept expression C′ of size smaller or equal than that of C, such that

1 KC |= C ≡ C′;
2 Every interpretation I whose signature contains the symbols of C but not the fresh symbols added

by KC can be expanded in one and only one way to an interpretation I ′ that satisfies KC .

Proof idea: Iteratively remove threshold expressions T in C from the “inside out”, adding new atomic
symbols TOOTH and axioms K(T 7→ TOOTH) to C as needed.
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Translating Threshold Expressions

Our Theorem

Let L be a Description Logic that contains all Boolean connectives, let K be a L(∇∇) knowledge base
and let φ be a L(∇∇) axiom (integer weights). Then, the problem of whether K |= φ can be reduced,
with polynomial overhead, to the problem of whether KL |= φL for some L knowledge base KL and
some L axiom φL.

Proof idea: translate every top-level concept C ∈ L(∇∇) appearing in K into some C′ ∈ L, adding the
required KC to K, and then replace every C with the corresponding C′ in the original K.
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Proving the Main Lemma

The Main Lemma

Let T = ∇∇t(C1 : w1 . . . Cn : wn) be any L(∇∇) threshold expression, where C1 . . . Cn are L-concepts
and t, w1 . . . wn are positive integers. Furthermore, let TOOTH be an atomic concept symbol not
appearing in T.
Then we can build a knowledge base K(T 7→ TOOTH) in L, containing expressions built out of the
concepts expressions C1 . . . Cn and of a number of fresh atomic symbols (including TOOTH) such that

1 K(T 7→ TOOTH) |= TOOTH ≡ T;

2 Every interpretation I whose signature contains the atoms contained in T but not the fresh atoms
introduced by K(T 7→ TOOTH) can be expanded in one and only one way into some I ′ that satisfies
K(T 7→ TOOTH);

3 The size of K(T 7→ TOOTH) is polynomial in the size of T.

Proof Idea: Represent the binary encodings of weights that apply to some individual d and of threshold
via new concept symbols, then sum and compare (ripple carry adder).
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Parameters

Let
k = dlog2(max(t, w1, . . . , wn)e+ 1

be the number of bits necessary to encode each of t and of the wi in binary.

Example

Let C = ∇∇4(A1 : 1, A2 : 2, A3 : 3). Then n = 3, because we have three arguments, and k = 3, since
we only need three bits to encode 1, 2, 3 and 4 in binary.
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Encoding the weights

Let Wij : i ∈ 1 . . . n, j ∈ 0 . . . k − 1 and Tj : j ∈ 0 . . . k − 1 be fresh atomic symbols.
Then let K0 be the TBox containing the axioms

� Wij ≡ Ci for all i ∈ 1 . . . n and for all j ∈ 0 . . . k − 1 such that the j-th least significant digit of
the binary representation of wi is 1, and Wij ≡ ⊥ for all the others;

� Tj ≡ > for all j ∈ 0 . . . k − 1 such that the j-th least significant digit of the binary representation
of t is 1, and Tj ≡ ⊥ for the others.
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Encoding the Weights

Lemma

|K0| = kn+ k. Moreover, any interpretation I in which C1 . . . Cn can be interpreted and in which the
fresh atoms Wij and Tj do not appear has a unique extension to an interpretation I ′ such that

I ′ |= K0. For that interpretation, we furthermore have that, for all individuals d ∈ ∆I′ ,∑
{2j : j = 0 . . . k − 1, d ∈W I′

ij } =

{
wi if d ∈ CI

i ;
0 otherwise.

for all i ∈ 1 . . . n. Likewise, ∑
{2j : j = 0 . . . k − 1, d ∈ T I′

j } = t.

Example: C = ∇∇4(A1 : 1, A2 : 2, A3 : 3)

The binary encodings of 1, 2, 3 and 4 are 001, 010, 011 and 100. Therefore, K0 contains the axioms
W10 ≡ A1, W11 ≡ ⊥, W12 ≡ ⊥, W20 ≡ ⊥ W21 ≡ A2, W22 ≡ ⊥, W30 ≡ A3, W31 ≡ A3, W32 ≡ ⊥,
T0 ≡ ⊥, T1 ≡ ⊥, T2 ≡ >.
The total number of axioms in K0 is thus 12, that is, kn+ k for k = n = 3.
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Encoding the Sum: Base Case

We define K1 as the union of K0 and the following axioms, for the fresh atomic symbols
SUM10 . . . SUM

1
k−1:

� For all j = 0 . . . k − 1, we add the axiom SUM1j ≡W1j .

Lemma

|K1| = |K0|+ k = kn+ 2k. Let I be as before: then I has exactly one expansion to a model I ′ of K1,
and for I ′ we have that∑

{2j : j = 0 . . . k − 1, d ∈ (SUM1j )I
′
} =

∑
{wi : 1 ≤ i ≤ 1, d ∈ CI

i }.

Example (Continued)

K1 is K0 plus the axioms SUM10 ≡W10, SUM11 ≡W11 and SUM12 ≡W12. In total K1 contains 15 axioms,
as expected.
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Encoding the Sum: Other Cases

For i = 2 . . . n, we define inductively Ki as Ki−1 plus the following axioms (for fresh symbols
SUMi0 . . . SUM

i
k−1 and CARRYi0 . . . CARRY

i
k−1) and OVERFLOWi:

� The axiom CARRYi0 ≡ ⊥;

� For all j = 0 . . . k − 1, the axiom

SUM
i
j ≡(CARRYij u SUM

i−1
j uW i

j ) t (CARRYij u ¬SUMi−1
j u ¬W i

j )t

(¬CARRYij u SUM
i−1
j u ¬W i

j ) t (¬CARRYij u ¬SUMi−1
j uW i

j );

� For all j = 1 . . . k − 1, the axiom

CARRY
i
j ≡ (CARRYij−1 u SUM

i−1
j−1) t (CARRYij−1 uW i

j−1) t (SUMi−1
j−1 uW

i
j−1);

� The axiom

OVERFLOW
i ≡ (CARRYik−1 u SUM

i−1
k−1) t (CARRYik−1 uW i

k−1) t (SUMi−1
k−1 uW

i
k−1).

Note: This constructs a ripple-carry adder via DL axioms.
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Encoding the Sum: Other Cases

Lemma

For all ` = 1 . . . n, |K`| = kn+ 2k + (`− 1)(2k + 1), and so in particular
|Kn| = kn+ 2k + (n− 1)(2k + 1) = 3nk + n− 1.
Moreover, for every such `, every interpretation I as before can be extended in exactly one way to an
interpretation I ′ which satisfies K`; and for this interpretation SUM`k−1 . . . SUM

`
0 is a binary encoding of

the sum of the weights (up to w`) which correspond to concepts that apply to the current individual,

in the sense that (for all d ∈ ∆I′)∑
{2j : j = 0 . . . k − 1, d ∈ (SUM`j)

I′} =
∑
{wi : 1 ≤ i ≤ `, d ∈ CI}

whenever that value is less than 2k, and d ∈ (OVERFLOW`)I
′

otherwise
In particular, if I |= Kn then∑

{2j : j = 0 . . . k − 1, d ∈ (SUMnj )I
′
} =

∑
{wi : 1 ≤ i ≤ n, d ∈ CI} = vIC (d)

is the value of our tooth expression C = ∇∇t(C1 : w1 . . . Cn : wn) if that value is less than 2k, and

otherwise d ∈ (OVERFLOWi)I
′

for at least one i = 2 . . . n.
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Encoding the Sum: Other Cases

Example (Continued)

K2 adds to K1 the axioms

16 CARRY20 ≡ ⊥;

17 SUM20 ≡ (CARRY20 u SUM10 uW 2
0 ) t ‘(CARRY20 t ¬SUM10 u ¬W 2

0 ) t (¬CARRY20 u SUM10 u ¬W 2
0 ) t

(¬CARRY20 u ¬SUM10 uW 2
0 );

18 SUM21 ≡ (CARRY21 u SUM11 uW 2
1 ) t ‘(CARRY21 t ¬SUM11 u ¬W 2

1 ) t (¬CARRY21 u SUM11 u ¬W 2
1 ) t

(¬CARRY21 u ¬SUM11 uW 2
1 );

19 SUM22 ≡ (CARRY22 u SUM12 uW 2
2 ) t ‘(CARRY21 t ¬SUM12 u ¬W 2

2 ) t (¬CARRY21 u SUM12 u ¬W 2
2 ) t

(¬CARRY21 u ¬SUM12 uW 2
2 );

20 CARRY21 ≡ (CARRY20 u SUM10) t (CARRY20 uW 2
0 ) t (SUM10 uW 2

0 );

21 CARRY22 ≡ (CARRY21 u SUM11) t (CARRY21 uW 2
1 ) t (SUM11 uW 2

1 );

22 OVERFLOW2 ≡ (CARRY22 u SUM12) t (CARRY22 uW 2
2 ) t (SUM12 uW 2

2 ).
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Encoding the Sum: Other Cases

Example (Continued)

Then K3 adds to this the axioms

23 CARRY30 ≡ ⊥;

24 SUM30 ≡ (CARRY30 u SUM20 uW 3
0 ) t ‘(CARRY30 t ¬SUM20 u ¬W 3

0 ) t (¬CARRY30 u SUM20 u ¬W 3
0 ) t

(¬CARRY30 u ¬SUM20 uW 3
0 );

25 SUM31 ≡ (CARRY31 u SUM21 uW 3
1 ) t ‘(CARRY31 t ¬SUM21 u ¬W 3

1 ) t (¬CARRY31 u SUM21 u ¬W 3
1 ) t

(¬CARRY31 u ¬SUM21 uW 3
1 );

26 SUM32 ≡ (CARRY32 u SUM22 uW 3
2 ) t ‘(CARRY31 t ¬SUM22 u ¬W 3

2 ) t (¬CARRY31 u SUM22 u ¬W 3
2 ) t

(¬CARRY31 u ¬SUM22 uW 3
2 );

27 CARRY31 ≡ (CARRY30 u SUM20) t (CARRY30 uW 3
0 ) t (SUM20 uW 3

0 );

28 CARRY32 ≡ (CARRY31 u SUM21) t (CARRY31 uW 3
1 ) t (SUM21 uW 3

1 );

29 OVERFLOW3 ≡ (CARRY32 u SUM22) t (CARRY32 uW 3
2 ) t (SUM22 uW 3

2 ).
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Comparing with the Threshold

Now define K as Kn plus the following axioms (for fresh atoms EQk−1 . . . EQ0, MAJk−1 . . . MAJ0, TOOTH:

� EQk−1 ≡ ((SUMnk−1 u Tk−1) t (¬SUMnk−1 u ¬Tk−1));

� For j = (k − 2) . . . 0, the axiom

EQj ≡ EQj+1 u ((SUMnj u Tj) t (¬SUMnj u ¬Tj));

� MAJk−1 ≡ SUMnk−1 u ¬Tk−1;

� For j = (k − 2) . . . 0, the axiom

MAJj ≡ EQj+1 u SUM
n
j u ¬Tj ;

� The axiom

TOOTH ≡ OVERFLOW
2 t . . . t OVERFLOW

n t MAJk−1 t . . . t MAJ0 t EQ0.
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Comparing with the Threshold

Lemma

|K| = |Kn|+ 2k + 1 = 3nk + n+ 2k. Moreover, every interpretation I as before can be extended in
exactly one way to an interpretation I ′ that satisfies K; and for this interpretation and for every
individual d ∈ ∆I′ ,

� For all j = k− 1 . . . 0, d ∈ EQIj if and only if the binary encodings of vIC (d) and of t agree from the
most significant digit to the j-th least significant digit;

� For all j = k − 1 . . . 0, d ∈ MAJIj if and only if the binary encodings of vIC (d) and of t disagree on
the j-th least significant digit, which is greater for vIC (d) than for t, but agree on all the digits on
the left of it;

� d ∈ TOOTHI
′

if and only if we obtained an overflow when summing all the weights which apply to
the individual d (remember that we assumed positive weights, so this implies at once that vIC (d) is
greater than the threshold), or if there is a digit that is greater for vIC (d) than for t and all the
digits to the left agree, or if all the digits of vIC (d) and of t are the same - that is, if and only if
vIC (d) ≥ t.
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Comparing with the Threshold

Example (Continued)

We obtain K by adding to Kn the axioms

30 EQ2 ≡ ((SUM32 u T2) t (¬SUM32 u ¬T2));

31 EQ1 ≡ EQ2 u ((SUM31 u T1) t (¬SUM31 u ¬T1));

32 EQ0 ≡ EQ1 u ((SUM30 u T0) t (¬SUM30 u ¬T0));

33 MAJ2 ≡ SUM32 u ¬T2;

34 MAJ1 ≡ EQ2 u SUM31 u ¬T1;

35 MAJ0 ≡ EQ1 u SUM30 u ¬T0;

36 TOOTH ≡ OVERFLOW2 t OVERFLOW3 t MAJ2 t MAJ1 t MAJ0 t EQ0.
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Threshold Expressions are Cheap. Are they Good?

What We Showed

If L is a Description Logic containing Boolean connectives, the inference problem for L(∇∇) is no
harder than the inference problem for L.

What We Implemented

We implemented the above-described polynomial translation algorithm for OWL. Works fine.

What Remains to be Shown

Are simple threshold expression powerful enough to represent useful concepts? Can they be learned
from data?
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The Gene Ontology

� Widely used ontology for annotating genes and gene products;

� More than 44,000 terms, split in three sub-ontologies
I Molecular Function: WHAT? – Molecular-level activities, e.g. Transporter activity.
I Cellular Component: WHERE? – Elements inside a cell, e.g. Mitochondrion
I Biological Process: WHY? – Biological “‘purpose”, e.g. DNA repair.

� Various mapping files relating gene/gene products to Gene Ontology terms.

� Various “‘slim” sub-ontologies containing terms related to specific species or topics (e.g. Yeast
subset, Plant subset. Metagenomics subset. . . ). For example, according to the Saccharomyces
Genome Database the enzyme ATP8 (ATP Synthase):
I Executes molecular functions GO:0016887 ATPase activity, GO:0016787 Hydrolase activity, . . .
I Is located in GO:0005740 Mitochondrial Envelope, in GO:0005739 Mitochondrion, in GO:0005737

Cytoplasm, . . .
I Is involved in the processes of GO:0006811 Ion transport, GO:0055085 Transmembrane

transport, . . .

For our experiment, we focused on yeast sub-ontology and yeast-related mappings and considered this
(difficult) problem:

To which degree can we infer Molecular Function annotations (WHAT?) from Cellular Component
(WHERE?) and Biological Process (WHY?) ones?
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The purpose of the experiment

To which degree can we infer Molecular Function annotations (WHAT?) from Cellular Component
(WHERE?) and Biological Process (WHY?) ones?

� This is a hard problem: generally, you’d use much more information than Cellular Component
and Biological Process annotations to try to guess the function of a protein.

� Nonetheless, there are clear correlations between the annotations of the three sub-ontologies, ones
that “classic” machine learning approaches can easily find.

� Our purpose: We want to show that simple (≤ 10 components) threshold operators, learned via a
very basic evolutionary algorithm, can capture such correlations about as well as more
sophisticated approaches.

NOTE: we are not trying to come up with a competitive, novel ML algorithm. We are exploring the
expressive power of simple threshold expressions in real life applications. If our system will perform
about as well as the competitors, we will be happy.
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Data Preparation and Evaluation

� Remove annotations marked as “dubious”;

� Remove top-level annotations (“Protein ATP8 is in some cellular components”);

� Remove products with < 3 Cellular Component or Biological Process annotations (“features”);

� Consider Molecular Function annotations (“labels”) that apply to at least 100 products.

What remains: 4,595 gene products, 120 features, 17 possible labels.

� We kept five random labels for final testing, used the others to implement our approach and
tuning the baseline algorithms.

This dataset is heavily imbalanced: most molecular functions apply to few proteins. This requires some
adjustments to some baseline methods (e.g. oversampling positive cases) for good performance.

As performance metric, we use the Matthews Correlation Coefficient (Pearson Correlation on binary
classification problems), which is more appropriate for imbalanced classes than e.g. accuracy or F1.
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Algorithms, Training, Results

We used the following classifiers as implemented in the Waikato Environment for Knowledge Analysis
(WEKA):

� Random Forests (RM);

� Support Vector Machine (SVM);

� Decision table majority classifier (DT);

� Logistic regression classifier (LR);

� Multilayer perceptron classifier (MLP).

Plus, of course,

� Our simple threshold expression learning algorithm (TOOTH).

For all labels, we split all our data in five folds, maintaining the same proportion of true labels in all
folds, trained all algorithms on four and tested the other, averaged; and we used the 12 non-final labels
to tune the parameters of the algorithms for this kind of problem, reserving the five last for evaluation.
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Results (average over five folds)

NOTE: LR is a linear classifier, so we could translate its models into threshold expressions.
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Conclusions

Threshold Expressions may be “syntactic sugar”, but they are really sweet!

� Arise naturally in knowledge representation tasks;

� Can represent compactly and readably complex concepts;

� Do not make the inference problem any harder (for most DLs);

� Can be learned from data in real life examples.

� Simple, effective link between Machine Learning and Symbolic Reasoning.

What’s next:

� Better integration with OWLAPI/Protege

� Richer threshold expressions: thresholds on relations, e.g. +3 points for each minor child, +1
point for each adult child;

� Explore and compare with decision trees (human interpretability).
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